Skip to main content

Publications

We like to inspire and share interesting knowledge!

  1. I Carannante, Y Johansson, G Silberberg, J Hellgren Kotaleski. Data-Driven Model of Postsynaptic Currents Mediated by NMDA or AMPA Receptors in Striatal Neurons. Front Comput Neurosci. 2022; 16: 806086.
  2. J Fu, A Tzortzakakis, J Barroso, E Westman, D Ferreira, R Moreno. Generative Aging of Brain Images with Diffeomorphic Registration. arXiv preprint. 2022; arXiv:2205.15607. https://doi.org/10.48550/arXiv.2205.15607
  3. A Hain, D Jörgens, R Moreno. Assessing Streamline Plausibility Through Randomized Iterative Spherical-Deconvolution Informed Tractogram Filtering. arXiv preprint 2022; arXiv:2205.04843. https://doi.org/10.48550/arXiv.2205.04843
  4. M Siegbahn, C Engmér Berglin, R Moreno. Automatic segmentation of the core of the acoustic radiation in humans. Front Neurol. 2022 : 934650. https://doi.org/10.3389/fneur.2022.934650
  5. C Dartora, A Marseglia, G Mårtensson, G Rukh, J Dang, JS Muehlboeck, LO Wahlund, R Moreno, J Barroso, D Ferreira, HB Schiöth, E Westman. Predicting the Age of the Brain with Minimally Processed T1-weighted MRI Data. medRxiv preprint. 2022; medRxiv:2022.09.06.22279594. https://doi.org/10.1101/2022.09.06.22279594
  6. Chakravarty K, Roy S, Sinha A, Nambu A, Chiken S, Hellgren Kotaleski J, Kumar A. Transient Response of Basal Ganglia Network in Healthy and Low-Dopamine State. eNeuro. 2022 Mar 18;9(2):ENEURO.0376-21.2022. doi: 10.1523/ENEURO.0376-21.2022.
  7. Hjorth, J.J.J., Hellgren Kotaleski, J. & Kozlov, A. Predicting Synaptic Connectivity for Large-Scale Microcircuit Simulations Using Snudda. Neuroinform 19, 685–701 (2021). https://doi.org/10.1007/s12021-021-09531-w
  8. G Colombo, R Cuber, L Kanari, A Venturino, R Schulz, M Scolamiero, J Agerberg, H Mathys, L Tsai, W Chachólski,, K Hess, S Siegert. Microglial morphOMICs, a tool for mapping microglial morphology, reveals brain-region-and sex-dependent phenotypes. Nature neuroscience, 2022.
  9. W Chachólski, A Guidolin, I Ren, M Scolamiero, F Tombari. Effective computation of relative homological invariants for functors over posets. arXiv preprint 2022; arXiv:2209.05923
  10. W Chachólski, A Jin, F Tombari. Realisations of posets and tameness. arXiv preprint 2022; arXiv:2112.12209
  11. W Chachólski, René Corbet, Anna-Laura Sattelberger. The Shift-Dimension of Multipersistence Modules. arXiv preprint 2022; arXiv:2112.06509.
  12. W Chachólski, B Gunti, C Landi, Decomposing filtered chain complexes: Geometry behind barcoding algorithms. Computational Geometry, Volume 109, 2023.
  13. N Hulst, Exploring persistent homology as a method for capturing functional connectivity differences in Parkinson’s Disease. Master Thesis. DiVA, id: diva2:1687257.
  14. Lucas Höglund, Analysis of Eye Tracking Data from Parkinson’s Patients using Machine Learning, MS thesis, KTH.
  15. Leo Bergman, Feature extraction with self-supervised learning on eye-tracking data from Parkinson’s patients and healthy individuals, MS thesis, KTH.
  16. Emma Lind. Analysis of Brain Signals from Patients with Parkinson’s Disease using Self-Supervised Learning. MS thesis, KTH.
  17. Wilhelm Ågren, Feature extraction from MEG data using self-supervised learning. MS thesis, KTH.
  18. Giulia Tuccio, Parameter estimation in a cardiovascular computational model using numerical optimization. MS thesis, KTH.
  19. Paolo Calderaro, Patient simulation. Generation of a machine learning “inverse” digital twin. MS thesis, KTH.
  20. Georgios Moschovis. NeuralDynamicsLab at ImageCLEF Medical 2022. ImageCLEF, 2022.
  21. Helson Pascal, Lundqvist Daniel, Svenningsson Per, Vinding Mikkel, Kumar Arvind (2023) Cortex-wide topography of 1/f-exponent in Parkinson’s disease. Nature Parkinson’s Disease, 9, Article number: 109.
  22. Zang, Jie, Liu Shenquan, Helson Pascal, Kumar Arvind (2024) Structural constraints on the emergence of oscillations in multi-population neural networks. eLIFE, 12(Feb 5).
  23. Wärnberg Emil, Kumar Arvind (2023) Feasibility of dopamine as a vector-valued feedback signal in the basal ganglia PNAS, 32(120):e2221994120