
Seminar – Digital Futures, August 29, 2024

Artificial Intelligence of Things (AIoT):
Bringing Intelligence into the Physical World

Ivana Podnar Žarko

University of Zagreb, Faculty of Electrical Engineering and
Computing (UNIZG-FER)

The University
of Zagreb
is the biggest and the
oldest Croatian
public university.

3

Faculty of Electrical Engineering and Computing

3500 BACHELOR & MASTER STUDENTS

500 POSTGRADUATE STUDENTS

730+ EMPLOYEES 300 ACADEMIC STAFF

IoTLab @ UNIZG-FER

Internet of Things Laboratory
http://www.iot.fer.hr/

Established within
Department of Telecommunications
in 2015

Faculty members (3):
Prof. Ivana Podnar Žarko, PhD (Head)
Prof. Gordan Ježić, PhD

 Prof. Mario Kušek, PhD

PhD students (7):
 Ivan Čilić, MSc
 Mislav Has, MSc

Ivan Kralj, MSc
 Dora Kreković, MSc

 Katarina Mandarić, MSc
Ana Petra Jukić, MSc
Katarina Vuknić, MSc

4

http://www.iot.fer.hr/

IoTLab: Selected research projects

• AIoTwin: Twinning action for spreading excellence in Artificial Intelligence of Things, funded the
Horizon Europe program (01/2023 – 12/2025)

• symbIoTe: Symbiosis of smart objects across IoT environments, H2020 R&I project (2016 – 2018)

• OpenIoT: Open Source blueprint for large scale self-organizing cloud environments for IoT applications,
FP7 project (2013 – 2015)

• DIGIPHY: XR Communication and Interaction Through a Dynamically Updated Digital Twin of a Smart
Space, funded from Recovery and Resilience Facility (RRF), coordinated by UNIZG-FER, partners:
Ericsson Nikola Tesla d.d. and Diversitas IT Sustavi d.o.o. (07/2024 – 06/2026)

• IoT-field: An Ecosystem of Networked Devices and Services for IoT Solutions Applied in Agriculture,
funded from the European Structural and Investment Funds, (03/2020 – 11/2023)

• DATACROSS: research project of the Centre of Research Excellence for Data Science and Advanced
Cooperative Systems (2017 – 2022)

• IoT4us: Human-centric smart services in interoperable and decentralised IoT environments (IoT4us),
research project No. 1986 funded by the Croatian Science Foundation, (01/2020 - 04/2024)

• Communication Challenges in Machine-to-Machine Communication, UNIZG-FER & Ericsson Nikola
Tesla, (2011– now)

5

About the AIoTwin project

Striving for research excellence for artificial intelligence in IoT

• “The EU-funded AIoTwin project offers a solution by introducing a
cooperative effort between leading European researchers,
universities and institutions. Through this effort, they plan to increase
the research excellence of UNIZG-FER and other European
universities in the field of IoT, while also educating new researchers.”

from: https://cordis.europa.eu/project/id/101079214
• January 2023 – December 2025

• Grant agreement ID: 101079214

• Programme: HORIZON.4.1 - Widening participation and spreading excellence

• Topic: HORIZON-WIDERA-2021-ACCESS-03-01

• Type of action: HORIZON Coordination and Support Actions

6

https://cordis.europa.eu/project/id/101079214

AIoTwin consortium

7

Strategic goal of the AIoTwin project

• to significantly strengthen the scientific excellence and innovation
capacity of UNIZG-FER in the area of the Internet of Things through
knowledge transfer and strategic networking activities between
UNIZG-FER researchers and world-class scientists from leading EU
institutions.

• to create a stimulating research environment at UNIZG-FER and
increase scientific quality to attract new national and international
talents

• to create opportunities for future career developments of young
researchers

• involves a research component – development of AIoTwin
orchestration middleware

8

Talk outline

• Introduction: AIoT

• Orchestration at the edge

• Orchestration
Middleware for AIoT

• Adaptive orchestration of
federated learning
workflows

• QoS-aware data routing
in the IoT-edge-cloud
continuum

• Future work

9

1st AIoTwin Summer School, Šibenik, Sept 2023

Introduction

Artificial Intelligence of Things, AIoT

10

IoT: the state of the art

• No. of connected IoT devices worldwide in
2023: 18 billion, prediction for 2030 – 30
billion (source: Statista)

• Cloud-based IoT platforms are still
predominant

• A set of mature IoT protocols

• The lack of interoperable ecosystems across
platforms and domains

• Existing infrastructure is underutilized

• Users are faced with a multitude of
applications within a single domain at
various locations

IoT vision vs. reality

12

Mobile/web app

Local Smart Space

Cloud

Platform Core

Cloud front-end

Gateway

Platform devices

Native IP

devices

pi

pj

Web of Things

se
n

se
, a

ct
u

a
te

se
n

d
re

a
d

in
g

ui

pj

p j'

GW or native IP
device)

IoT-platfom,
virtual entity

Non-IP device

user app

vision reality

pk

Artificial Intelligence of Things, AIoT

• IoT evolution

• Brings AI into smart physical spaces

• Boundaries between physical and digital
world disappear

• Smart physical spaces generate large
amounts of streaming data (sensing) for
learning, creation of new AI models

• AI models are increasingly used in smart
physical spaces, inference facilitates
decision-making

• Actuation enables machines to act

13

1. sensing

2. learning

3. decision-
making

4. acting

AIoT: a simple example application

Occupancy Detection and Smart
Lighting

• smart home environment that
automatically adjusts lighting (e.g. color
and brightness) based on the number of
people present

• Hardware: an edge device, USB
webcam and smart LED bulb

• Edge device hosts
1) a pretrained ML model which analyses a

video stream for people counting; the
number of people detected is sent to 2)

2) an IoT platform for integration and control
of smart devices: a smart LED bulb for
color and brightness control

14

IoT platform
(Home Assistant)

GW

Edge Node

video
stream

no. of
people

1. sensing

3. acting

adjust colour
and brightness

2. decision-
making

AIoT challenges

• distributed and heterogeneous environments with limited resources in
terms of available processing power and energy

• requires efficient orchestration of services in the computing continuum,
algorithms adapted to the distributed IoT-edge-cloud environment

• real-time data processing
• ML algorithms need to be adapted to online learning

• data streams from IoT devices are often incomplete and prone to errors

• strict privacy and security requirements
• protection of sensitive user data

• ensuring device integrity and security of the physical environment

15

Orchestration at the edge

IoT-edge-cloud continuum

Orchestration tools

16

Edge computing

• IoT-edge-cloud continuum

• Brings cloud services closer
to IoT devices

• reallocation of services from the
cloud to computing resources in
the vicinity of the IoT devices
and at the network edge

• Characteristics
• hierarchical multi-tier

infrastructure, heterogeneous
and dynamic environment

• near-edge vs. far-edge devices

17

Time series data Actuation requests

Benefits

• reduced processing latency and
overall network traffic

• improved reactivity

• increased scalability

• resilience to failures (both node
and link)

• improved privacy and security
(data remains within the same
administrative domain)

• reduced operating costs

Drawbacks

• heterogeneity increases system
complexity

• unstable nodes with limited
resources

• dynamic system with frequent
network changes

• increased capital costs for the
edge infrastructure

18

IoT-edge-cloud continuum

Edge orchestration

• Services running on edge nodes have to be
orchestrated to ensure their high availability

• technologies: microservices, containers,
container orchestration tools

• Service orchestration is needed to
• schedule
• deploy
• manage

• Main goal:
• continuously ensure the required QoS level

to IoT devices and application-level services
exposed to end users

19

services in a distributed edge

computing environment

Edge orchestration architecture

• Essential building blocks
• IoT Device (limited resources) – data source

and/or destination

• Edge Node (runs containerized edge
services) – “heterogeneous infrastructure”

• Edge Service (autonomous, stateless,
and portable) – deploy, start, stop, replicate,
migrate

• Orchestrator – centralized component

20

Orchestration tools

21

• Kubernetes: cloud
orchestration

• K3s: lightweight
Kubernetes

• Centralized arhitecture:
orchestrator and worker
nodes

Čilić, Ivan; Krivić, Petar; Podnar Žarko, Ivana; Kušek, Mario. (2023) Performance Evaluation of Container
Orchestration Tools in Edge Computing Environments. Sensors 2023, 23, 4008. https://doi.org/10.3390/s2308400

https://www.bib.irb.hr/1267845
https://www.bib.irb.hr/1267845

22

Orchestration tools: comparison

Parameter Kubernetes K3s KubeEdge ioFog

Documentation Quality High Medium Medium Low

Deployment Complexity High Low Medium Medium

Private Networks No Yes Yes Yes

Heterogeneity Yes Yes Yes Yes

Resource-Constrained Yes Yes Yes Yes

Memory Footprint (MB) ~50 ~50 ~40 ~240

Time (s) Kubernetes K3s KubeEdge ioFog

Total Startup Time 1.799 2.798 2.858 34.537

Total Migration Time 1.838 2.782 2.781 23.244

Startup Time Overhead 0.504 1.502 1.5622 33.326

Migration Time Overhead 0.542 1.486 1.485 22.032

Orchestration Middleware
for AIoT

Requirements and Architecture

23

AIoTwin Deliverable 1.1 - Report on Use Cases, Requirements, and
Architecture (1). 31 Dec 2023 PDF

https://aiotwin.eu/_download/repository/D1.1%20-%20Report%20on%20Use%20Cases,%20Requirements,%20and%20Architecture-v.1.0.pdf

• ML workflows/pipelines: learning
vs. inference

• Placement of ML models

• Federated learning and
aggregation

• Which node should be used for
inference for a data stream from a
particular IoT device?

24

What is so special about orchestration middleware for AIoT?

Learning Inference

Aggregation

Aggregation

Inference

Learning

Inference

Specified requirements

25

No Description

1 efficiently manage and monitor resources on each
node

2 collect the distribution of data available on node for
ML

3 collect the information on the underlying network
connecting nodes in the continuum

4 deploy and manage services across the continuum

5 run a configuration model to output configuration of
an ML pipeline

6 deploy ML components based on a learning
configuration

7 monitor learning performance

No Description

8 reconfigure the learning pipeline if a
better learning performance can be
achieved

9 deploy and manage inference
components.

10 monitor inference accuracy

11 monitor inference service performance

12 maintain inference performance and
dynamically adapt to changes in the
system

13 maintain a desired QoS level for clients
using the inference services

FL-related Inference-related

General Architecture for Orchestration
of ML Pipelines

• Orchestrator

o central entity, deployed in the
cloud for high availability

o general purpose orchestration,
learning- and inference-specific
components

• Node

o runs ML pipeline services in a
Docker container or WebAssembly

26

Adaptive orchestration of FL
pipelines: the architecture

• FL Clients and Aggregators

• Nodes participating in training may
have different (i) hardware
specifications, (ii) network
characteristics, or (iii) data
distributions.

• An adaptive orchestration mechanism
is needed to deploy the entities of the
FL pipeline, monitor the execution of
the pipeline, and perform
reconfiguration when needed.

27

QoS-aware load balancing for
inference: the architecture

• QEdgeProxy, a distributed QoS-aware
load balancer

• QEdgeProxy serves as a „QoS agent” for
IoT clients within the computing
continuum, and acts as an external
routing component, i.e., an
intermediary between IoT clients and
IoT services across the computing
continuum.

• Adapts to changes in the continuum to
meet QoS requirements

28

Orchestration Middleware

Adaptive orchestration of federated learning workflows

29

Ivan Čilić, Anna Lackinger, Alireza Furutanpey, Ilir Murturi, Pantelis
Frangoudis, Ivana Podnar Žarko, Schahram Dustdar. Adaptive
Orchestration of Federated Learning Workflows. In preparation for
journal submission. Sept 2024.

• FL challenges
oHardware heterogeneity ->

stragglers

oUnstable and bandwidth-limited
network

oUnbalanced data distribution
(non-IID)

oPrivacy requirement

• Hierarchical FL to reduce
communication costs

30

Hierarchical Federated Learning

Hierarchical FL configuration: an example

31

How should we organize clients into clusters?
- Data distribution
- Communication costs
FL configuration?
 - aggregation algorithm
 - aggregation frequency

Hierarchical FL experiments

• What influences the training performance?
• different number of clients and data samples per client, different number of class labels per client, position of clients

within clusters, the number of epochs and local aggregation rounds

• CNN for classification of photos, CIFAR-10

• An example setup: possible data distribution strategies when 20 clients share the same number of
data samples

32

Strategy with 1 label per client 2 labels per client 10 labels per client

Strategy

Accuracy after 500

epochs

1 label/client 22.71

2 labels/client 47.92

10 labels/client 69.39

Hierarchical FL experiments

33

IID cluster
Hierarchi-

cal
Ep LA

Accuracy after 500

epochs

No

No

10 -

22.73

No Yes 10 1 22.59

No Yes 5 2 24.33

No Yes 2 5 22.91

Yes No 10 - 22.71

Yes Yes 5 2 22.73

Yes Yes 2 5 21.37

• The continuum is dynamic -> adaptive orchestration

• challenges of hierarchical FL:
oconfiguration of an FL pipeline

depends on the model to be
trained, the underlying
infrastructure, and the data
distribution

odynamicity of the edge
environment influences the
configuration of an FL pipeline
(nodes come and go)

36

Adaptive Orchestration of Federated
Learning Workflows

Implementation: Adaptive FL
Orchestration on Top of Kubernetes

• FL Orchestrator
o implemented in Golang
obuilt on top of Kubernetes
o connects to Kubernetes API to deploy

services and obtain node information

• FL Service
oClient, local aggregator or global

aggregator
o Implemented in Python
oExtends Flower framework for FL

• Evaluation
oK3s cluster

37

38

Flowchart of the orchestration workflow
- Monitoring: infrastructure (node join and

leave) and ML performance (accuracy, loss)
- FL pipeline reconfiguration: we propose a

novel Reconfiguration decision-making
algorithm (RDMA)

- Reconfiguration costs: communication
- Performance gain: data distribution of the

new node affects the data distribution of
the cluster, measured by the Kullback-
Leibler divergence (KLD) and the number of
samples

Orchestration Middleware

QoS-aware data routing in the IoT-edge-cloud
continuum

39

I. Čilić, V. Jukanović, I.Podnar Žarko, P. Frangoudis, S. Dustdar. QEdgeProxy: QoS-Aware
Load Balancing for IoT Services in the Computing Continuum, IEEE International
Conference on Edge Computing & Communications (EDGE 2024), 2024.
https://arxiv.org/abs/2405.10788

https://arxiv.org/abs/2405.10788

Motivation

• Each edge service is associated with a set of QoS requirements
(SLOs), such as:

• latency, throughput, availability, security

• Significant body of works on QoS-aware scheduling and placement

• Research question: How can we continuously deliver IoT data from
client devices to service instances deployed across the continuum
while meeting the QoS requirements for data processing?

• Related work
• identify instances that optimize QoS or perform trade-offs between QoS and

load balancing

40

QEdgeProxy

• QoS-aware load balancer
designed as a QoS agent for IoT
clients
o Identifies service instances across

the continuum that can fulfill QoS
requirements for a given service
(QoS pool – maintained
continuously)

oForwards a request to a particular
service instance while performing
load balancing

41

QEdgeProxy

• QoS pool
• Multiple service replicas -> instances
• Each QEdgeProxy predicts QoS of a specific instance based on monitoring

and approximations
• Based on previous instance and node behavior, or network characteristics

• QoS pool is a subset of service instances that are likely to meet the QoS
requirements

• Events that trigger QoS pool updates
• Initial QoS pool creation
• Instance state updates
• QoS measurement updates
• Environment monitoring and reactive updates

42

Implementation: QEdgeProxy within
Kubernetes

• Runs as a Kubernetes DaemonSet

• HTTP server written in Golang

• Clients connect to the
services defined in
the request header

• Routing directly to service pod
through "kube-proxy“

• Subscribes to events in the
Kubernetes API

43

Software repository
https://github.com/AIoTwin/qedgeproxy

https://github.com/AIoTwin/qedgeproxy

Evaluation

• K3s cluster of 7 nodes

• Network emulation with Imunes

• Three configurations

• Kubernetes NodePort Service

• Proximity-based routing

(α=0.8 and α=1.0) [1]

• QEdgeProxy

44

[1] A. J. Fahs and G. Pierre, “Proximity-aware traffic routing in distributed fog computing
platforms,” in 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGRID 2019

Evaluation scenarios

• Instance 𝑠𝑖 running on node Worker i

• QoS requirement:
• Latency < 80 ms

• Static scenario

• 7 instances, one per node

• Dynamic scenario

• Instance failures

• Network changes

• Increased processing latency

45

46

Results – response time

Static scenario Dynamic scenario

47

Results – load balancing

Static scenario

QEdgeProxy: conclusion

• QEdgeProxy effectively balances load and continuously maintains
QoS per individual clients

• It outperforms both built-in Kubernetes load balancing and a state-of-
the-art solution, serving a high rate of requests that meet the QoS
requirements with minimal computational overhead

49

In addition: FL & inference

A. Lackinger, P. Frangoudis, I. Čilić, A. Furutanpey, I. Murturi, I.Podnar Žarko, S. Dustdar. Inference Load-
Aware Orchestration for Hierarchical Federated Learning. 2024 IEEE 49th Conference on Local Computer
Networks (LCN), October 2024. https://arxiv.org/abs/2407.16836

50

joint orchestration

of distributed

training and

inference serving

in a hierarchical FL

environment

https://arxiv.org/abs/2407.16836

Future Work

51

Future Work

• Extend the orchestrator with:
o support for scheduling and deployment of inference service across the

continuum based on the placement of clients that access them
o scheduler that takes into account the energy consumption of both learning

and inference services

• Integration of the orchestrator with QEdgeProxy to route data
to appropriate inference service instances
o routing of inference requests from IoT devices to inference services based on

different QoS requirements, such as request latency or accuracy of inference
models

• Novel decision-making and reconfiguration algorithms and large-
scale experiments

52

AIoTwin team

53

54

Thank you!

Time for questions.

Follow us at:

• https://www.aiotwin.eu/

• https://www.linkedin.com/company/iotlabfer/

• https://twitter.com/IoTLabFER

• https://github.com/aiotwin

https://www.aiotwin.eu/
https://www.linkedin.com/company/iotlabfer/
https://twitter.com/IoTLabFER
https://github.com/aiotwin

	Slide 1: Artificial Intelligence of Things (AIoT): Bringing Intelligence into the Physical World
	Slide 2
	Slide 3
	Slide 4: IoTLab @ UNIZG-FER
	Slide 5: IoTLab: Selected research projects
	Slide 6: About the AIoTwin project
	Slide 7: AIoTwin consortium
	Slide 8: Strategic goal of the AIoTwin project
	Slide 9: Talk outline
	Slide 10: Introduction
	Slide 11: IoT: the state of the art
	Slide 12: IoT vision vs. reality
	Slide 13: Artificial Intelligence of Things, AIoT
	Slide 14: AIoT: a simple example application
	Slide 15: AIoT challenges
	Slide 16: Orchestration at the edge
	Slide 17: Edge computing
	Slide 18: IoT-edge-cloud continuum
	Slide 19: Edge orchestration
	Slide 20: Edge orchestration architecture
	Slide 21: Orchestration tools
	Slide 22: Orchestration tools: comparison
	Slide 23: Orchestration Middleware for AIoT
	Slide 24: What is so special about orchestration middleware for AIoT?
	Slide 25: Specified requirements
	Slide 26: General Architecture for Orchestration of ML Pipelines
	Slide 27: Adaptive orchestration of FL pipelines: the architecture
	Slide 28: QoS-aware load balancing for inference: the architecture
	Slide 29: Orchestration Middleware
	Slide 30: Hierarchical Federated Learning
	Slide 31: Hierarchical FL configuration: an example
	Slide 32: Hierarchical FL experiments
	Slide 33: Hierarchical FL experiments
	Slide 36: Adaptive Orchestration of Federated Learning Workflows
	Slide 37: Implementation: Adaptive FL Orchestration on Top of Kubernetes
	Slide 38
	Slide 39: Orchestration Middleware
	Slide 40: Motivation
	Slide 41: QEdgeProxy
	Slide 42: QEdgeProxy
	Slide 43: Implementation: QEdgeProxy within Kubernetes
	Slide 44: Evaluation
	Slide 45: Evaluation scenarios
	Slide 46: Results – response time
	Slide 47: Results – load balancing
	Slide 49: QEdgeProxy: conclusion
	Slide 50: In addition: FL & inference
	Slide 51: Future Work
	Slide 52: Future Work
	Slide 53: AIoTwin team
	Slide 54

