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IoTLab: Selected research projects

• AIoTwin: Twinning action for spreading excellence in Artificial Intelligence of Things, funded the 
Horizon Europe program (01/2023 – 12/2025)

• symbIoTe: Symbiosis of smart objects across IoT environments, H2020 R&I project (2016 – 2018)

• OpenIoT: Open Source blueprint for large scale self-organizing cloud environments for IoT applications, 
FP7 project (2013 – 2015)

• DIGIPHY: XR Communication and Interaction Through a Dynamically Updated Digital Twin of a Smart 
Space, funded from Recovery and Resilience Facility (RRF), coordinated by UNIZG-FER, partners: 
Ericsson Nikola Tesla d.d. and Diversitas IT Sustavi d.o.o. (07/2024 – 06/2026)

• IoT-field: An Ecosystem of Networked Devices and Services for IoT Solutions Applied in Agriculture, 
funded from the European Structural and Investment Funds, (03/2020 – 11/2023)

• DATACROSS: research project of the Centre of Research Excellence for Data Science and Advanced 
Cooperative Systems  (2017 – 2022) 

• IoT4us: Human-centric smart services in interoperable and decentralised IoT environments (IoT4us),
research project No. 1986 funded by the Croatian Science Foundation, (01/2020 - 04/2024)

• Communication Challenges in Machine-to-Machine Communication, UNIZG-FER & Ericsson Nikola 
Tesla, (2011– now)
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About the AIoTwin project

Striving for research excellence for artificial intelligence in IoT

• “The EU-funded AIoTwin project offers a solution by introducing a 
cooperative effort between leading European researchers, 
universities and institutions. Through this effort, they plan to increase 
the research excellence of UNIZG-FER and other European 
universities in the field of IoT, while also educating new researchers.”

from: https://cordis.europa.eu/project/id/101079214 
• January 2023 – December 2025

• Grant agreement ID: 101079214 

• Programme: HORIZON.4.1 - Widening participation and spreading excellence

• Topic: HORIZON-WIDERA-2021-ACCESS-03-01

• Type of action: HORIZON Coordination and Support Actions
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https://cordis.europa.eu/project/id/101079214


AIoTwin consortium
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Strategic goal of the AIoTwin project

• to significantly strengthen the scientific excellence and innovation 
capacity of UNIZG-FER in the area of the Internet of Things through 
knowledge transfer and strategic networking activities between 
UNIZG-FER researchers and world-class scientists from leading EU 
institutions.

• to create a stimulating research environment at UNIZG-FER and 
increase scientific quality to attract new national and international 
talents

• to create opportunities for future career developments of young 
researchers

• involves a research component – development of AIoTwin 
orchestration middleware
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Talk outline

• Introduction: AIoT

• Orchestration at the edge

• Orchestration
Middleware for AIoT 

• Adaptive orchestration of 
federated learning 
workflows

• QoS-aware data routing 
in the IoT-edge-cloud 
continuum

• Future work
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1st AIoTwin Summer School, Šibenik, Sept 2023



Introduction

Artificial Intelligence of Things, AIoT
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IoT: the state of the art

• No. of connected IoT devices worldwide in 
2023: 18 billion, prediction for 2030 – 30 
billion (source: Statista)

• Cloud-based IoT platforms are still 
predominant

• A set of mature IoT protocols

• The lack of interoperable ecosystems across 
platforms and domains

• Existing infrastructure is underutilized

• Users are faced with a multitude of 
applications within a single domain at 
various locations



IoT vision vs. reality
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Artificial Intelligence of Things, AIoT

• IoT evolution

• Brings AI into smart physical spaces

• Boundaries between physical and digital 
world disappear 

• Smart physical spaces generate large 
amounts of streaming data (sensing) for 
learning, creation of new AI models

• AI models are increasingly used in smart 
physical spaces, inference facilitates 
decision-making

• Actuation enables machines to act
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AIoT: a simple example application

Occupancy Detection and Smart 
Lighting 

• smart home environment that 
automatically adjusts lighting (e.g. color 
and brightness) based on the number of 
people present

• Hardware: an edge device, USB 
webcam and smart LED bulb 

• Edge device hosts 
1) a pretrained ML model which analyses a 

video stream for people counting; the 
number of people detected is sent to 2)

2) an IoT platform for integration and control 
of smart devices: a smart LED bulb for 
color and brightness control
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AIoT challenges

• distributed and heterogeneous environments with limited resources in 
terms of available processing power and energy

• requires efficient orchestration of services in the computing continuum, 
algorithms adapted to the distributed IoT-edge-cloud environment

• real-time data processing 
• ML algorithms need to  be adapted to online learning

• data streams from IoT devices are often incomplete and prone to errors

• strict privacy and security requirements
• protection of sensitive user data

• ensuring device integrity and security of the physical environment
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Orchestration at the edge 

IoT-edge-cloud continuum

Orchestration tools
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Edge computing

• IoT-edge-cloud continuum

• Brings cloud services closer 
to IoT devices

• reallocation of services from the 
cloud to computing resources in 
the vicinity of the IoT devices 
and at the network edge

• Characteristics
• hierarchical multi-tier 

infrastructure, heterogeneous 
and dynamic environment

• near-edge vs. far-edge devices
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Time series data Actuation requests



Benefits

• reduced processing latency and 
overall network traffic

• improved reactivity

• increased scalability

• resilience to failures (both node 
and link)

• improved privacy and security 
(data remains within the same 
administrative domain)

• reduced operating costs

Drawbacks

• heterogeneity increases system 
complexity

• unstable nodes with limited 
resources

• dynamic system with frequent 
network changes

• increased capital costs for the 
edge infrastructure
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IoT-edge-cloud continuum



Edge orchestration

• Services running on edge nodes have to be 
orchestrated to ensure their high availability

• technologies: microservices, containers, 
container orchestration tools

• Service orchestration is needed to 
• schedule
• deploy        
• manage

• Main goal:
• continuously ensure the required QoS level 

to IoT devices and application-level services 
exposed to end users 

19

services in a distributed edge 

computing environment



Edge orchestration architecture

• Essential building blocks
• IoT Device (limited resources) – data source 

and/or destination

• Edge Node (runs containerized edge
services) – “heterogeneous infrastructure”

• Edge Service (autonomous, stateless,
and portable) – deploy, start, stop, replicate, 
migrate

• Orchestrator – centralized component
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Orchestration tools
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• Kubernetes: cloud 
orchestration

• K3s: lightweight 
Kubernetes

• Centralized arhitecture: 
orchestrator and worker 
nodes

Čilić, Ivan; Krivić, Petar; Podnar Žarko, Ivana; Kušek, Mario. (2023) Performance Evaluation of Container 
Orchestration Tools in Edge Computing Environments. Sensors 2023, 23, 4008. https://doi.org/10.3390/s2308400

https://www.bib.irb.hr/1267845
https://www.bib.irb.hr/1267845
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Orchestration tools: comparison

Parameter Kubernetes K3s KubeEdge ioFog 

Documentation Quality High Medium Medium Low 

Deployment Complexity High Low Medium Medium 

Private Networks No Yes Yes Yes 

Heterogeneity Yes Yes Yes Yes 

Resource-Constrained Yes Yes Yes Yes 

Memory Footprint (MB) ~50 ~50 ~40 ~240 

 

Time (s) Kubernetes K3s KubeEdge ioFog 

Total Startup Time 1.799 2.798 2.858 34.537 

Total Migration Time 1.838 2.782 2.781 23.244 

Startup Time Overhead 0.504 1.502 1.5622 33.326 

Migration Time Overhead 0.542 1.486 1.485 22.032 

 



Orchestration Middleware 
for AIoT

Requirements and Architecture
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AIoTwin Deliverable 1.1 - Report on Use Cases, Requirements, and 
Architecture (1). 31 Dec 2023 PDF

https://aiotwin.eu/_download/repository/D1.1%20-%20Report%20on%20Use%20Cases,%20Requirements,%20and%20Architecture-v.1.0.pdf


• ML workflows/pipelines: learning 
vs. inference

• Placement of ML models

• Federated learning and 
aggregation

• Which node should be used for 
inference for a data stream from a 
particular IoT device?
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What is so special about orchestration middleware for AIoT?

Learning Inference

Aggregation

Aggregation

Inference

Learning

Inference



Specified requirements
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No Description

1 efficiently manage and monitor resources on each 
node

2 collect the distribution of data available on node for 
ML

3 collect the information on the underlying network 
connecting nodes in the continuum

4 deploy and manage services across the continuum

5 run a configuration model to output configuration of 
an ML pipeline

6 deploy ML components based on a learning 
configuration

7 monitor learning performance

No Description

8 reconfigure the learning pipeline if a 
better learning performance can be 
achieved

9 deploy and manage inference 
components.

10 monitor inference accuracy

11 monitor inference service performance

12 maintain inference performance and 
dynamically adapt to changes in the 
system

13 maintain a desired QoS level for clients 
using the inference services

FL-related Inference-related



General Architecture for Orchestration
of ML Pipelines

• Orchestrator

o central entity, deployed in the 
cloud for high availability

o general purpose orchestration, 
learning- and inference-specific 
components

• Node

o runs ML pipeline services in a 
Docker container or WebAssembly
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Adaptive orchestration of FL 
pipelines: the architecture

• FL Clients and Aggregators

• Nodes participating in training may 
have different (i) hardware 
specifications, (ii) network 
characteristics, or (iii) data 
distributions. 

• An adaptive orchestration mechanism 
is needed to deploy the entities of the 
FL pipeline, monitor the execution of 
the pipeline, and perform 
reconfiguration when needed. 
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QoS-aware load balancing for 
inference: the architecture

• QEdgeProxy, a distributed QoS-aware 
load balancer 

• QEdgeProxy serves as a „QoS agent” for 
IoT clients within the computing 
continuum, and acts as an external 
routing component, i.e., an 
intermediary between IoT clients and 
IoT services across the computing 
continuum. 

• Adapts to changes in the continuum to 
meet QoS requirements
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Orchestration Middleware

Adaptive orchestration of federated learning workflows

29

Ivan Čilić, Anna Lackinger, Alireza Furutanpey, Ilir Murturi, Pantelis 
Frangoudis, Ivana Podnar Žarko, Schahram Dustdar. Adaptive 
Orchestration of Federated Learning Workflows. In preparation for 
journal submission. Sept 2024.



• FL challenges
oHardware heterogeneity -> 

stragglers

oUnstable and bandwidth-limited 
network

oUnbalanced data distribution 
(non-IID)

oPrivacy requirement

• Hierarchical FL to reduce 
communication costs

30

Hierarchical Federated Learning



Hierarchical FL configuration: an example
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How should we organize clients into clusters?
- Data distribution
- Communication costs
FL configuration?
 - aggregation algorithm
 - aggregation frequency



Hierarchical FL experiments

• What influences the training performance? 
• different number of clients and data samples per client, different number of class labels per client, position of clients 

within clusters, the number of epochs and local aggregation rounds

• CNN for classification of photos, CIFAR-10 

• An example setup: possible data distribution strategies when 20 clients share the same number of 
data samples
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Strategy with 1 label per client 2 labels per client 10 labels per client

Strategy 

 

Accuracy after 500 

epochs

1 label/client 22.71

2 labels/client 47.92

10 labels/client 69.39



Hierarchical FL experiments
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IID cluster
Hierarchi-

cal
Ep LA

Accuracy after 500 

epochs

No

 

No

 
10 -

22.73 

 

No Yes 10 1 22.59

No Yes 5 2 24.33 

No Yes 2 5 22.91

Yes No 10 - 22.71

Yes Yes 5 2 22.73

Yes Yes 2 5 21.37 



• The continuum is dynamic -> adaptive orchestration

• challenges of hierarchical FL:
oconfiguration of an FL pipeline 

depends on the model to be 
trained, the underlying 
infrastructure, and the data 
distribution

odynamicity of the edge 
environment influences the 
configuration of an FL pipeline 
(nodes come and go)

36

Adaptive Orchestration of Federated 
Learning Workflows



Implementation: Adaptive FL 
Orchestration on Top of Kubernetes

• FL Orchestrator
o implemented in Golang
obuilt on top of Kubernetes
o connects to Kubernetes API to deploy

services and obtain node information

• FL Service
oClient, local aggregator or global

aggregator
o Implemented in Python
oExtends Flower framework for FL

• Evaluation
oK3s cluster
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Flowchart of the orchestration workflow
- Monitoring: infrastructure (node join and 

leave) and ML performance (accuracy, loss)
- FL pipeline reconfiguration: we propose a 

novel Reconfiguration decision-making 
algorithm (RDMA)

- Reconfiguration costs: communication
- Performance gain: data distribution of the 

new node affects the data distribution of 
the cluster, measured by the Kullback-
Leibler divergence (KLD) and the number of 
samples



Orchestration Middleware

QoS-aware data routing in the IoT-edge-cloud 
continuum
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I. Čilić, V. Jukanović, I.Podnar Žarko, P. Frangoudis, S. Dustdar. QEdgeProxy: QoS-Aware 
Load Balancing for IoT Services in the Computing Continuum, IEEE International 
Conference on Edge Computing & Communications (EDGE 2024), 2024. 
https://arxiv.org/abs/2405.10788 

https://arxiv.org/abs/2405.10788


Motivation

• Each edge service is associated with a set of QoS requirements 
(SLOs), such as:

• latency, throughput, availability, security

• Significant body of works on QoS-aware scheduling and placement

• Research question: How can we continuously deliver IoT data from 
client devices to service instances deployed across the continuum 
while meeting the QoS requirements for data processing?

• Related work
• identify instances that optimize QoS or perform trade-offs between QoS and 

load balancing
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QEdgeProxy

• QoS-aware load balancer 
designed as a QoS agent for IoT 
clients
o Identifies service instances across 

the continuum that can fulfill QoS 
requirements for a given service 
(QoS pool – maintained 
continuously)

oForwards a request to a particular 
service instance while performing 
load balancing

41



QEdgeProxy

• QoS pool
• Multiple service replicas -> instances
• Each QEdgeProxy predicts QoS of a specific instance based on monitoring 

and approximations
• Based on previous instance and node behavior, or network characteristics

• QoS pool is a subset of service instances that are likely to meet the QoS 
requirements

• Events that trigger QoS pool updates
• Initial QoS pool creation
• Instance state updates
• QoS measurement updates
• Environment monitoring and reactive updates

42



Implementation: QEdgeProxy within
Kubernetes

• Runs as a Kubernetes DaemonSet

• HTTP server written in Golang

• Clients connect to the 
services defined in 
the request header

• Routing directly to service pod 
through "kube-proxy“

• Subscribes to events in the 
Kubernetes API

43

Software repository
https://github.com/AIoTwin/qedgeproxy 

https://github.com/AIoTwin/qedgeproxy


Evaluation

• K3s cluster of 7 nodes

• Network emulation with Imunes

• Three configurations

• Kubernetes NodePort Service

• Proximity-based routing

(α=0.8 and α=1.0) [1]

• QEdgeProxy

44

[1] A. J. Fahs and G. Pierre, “Proximity-aware traffic routing in distributed fog computing
platforms,” in 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 
CCGRID 2019



Evaluation scenarios

• Instance 𝑠𝑖 running on node Worker i

• QoS requirement:
• Latency < 80 ms

• Static scenario

• 7 instances, one per node

• Dynamic scenario

• Instance failures

• Network changes

• Increased processing latency

45
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Results – response time

Static scenario Dynamic scenario
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Results – load balancing

Static scenario



QEdgeProxy: conclusion

• QEdgeProxy effectively balances load and continuously maintains 
QoS per individual clients

• It outperforms both built-in Kubernetes load balancing and a state-of-
the-art solution, serving a high rate of requests that meet the QoS 
requirements with minimal computational overhead

49



In addition: FL & inference

A. Lackinger, P. Frangoudis, I. Čilić, A. Furutanpey, I. Murturi, I.Podnar Žarko,  S. Dustdar. Inference Load-
Aware Orchestration for Hierarchical Federated Learning. 2024 IEEE 49th Conference on Local Computer 
Networks (LCN), October 2024. https://arxiv.org/abs/2407.16836 
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joint orchestration 

of distributed 

training and 

inference serving 

in a hierarchical FL 

environment

https://arxiv.org/abs/2407.16836


Future Work
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Future Work

• Extend the orchestrator with:
o support for scheduling and deployment of inference service across the 

continuum based on the placement of clients that access them
o scheduler that takes into account the energy consumption of both learning 

and inference services

• Integration of the orchestrator with QEdgeProxy to route data 
to appropriate inference service instances
o routing of inference requests from IoT devices to inference services based on 

different QoS requirements, such as request latency or accuracy of inference 
models

• Novel decision-making and reconfiguration algorithms and large-
scale experiments
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AIoTwin team
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Thank you!

Time for questions.

Follow us at:

• https://www.aiotwin.eu/

• https://www.linkedin.com/company/iotlabfer/

• https://twitter.com/IoTLabFER

• https://github.com/aiotwin

https://www.aiotwin.eu/
https://www.linkedin.com/company/iotlabfer/
https://twitter.com/IoTLabFER
https://github.com/aiotwin
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